Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Comput Methods Programs Biomed ; 226: 107109, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2117158

ABSTRACT

BACKGROUND AND OBJECTIVE: COVID-19 outbreak has become one of the most challenging problems for human being. It is a communicable disease caused by a new coronavirus strain, which infected over 375 million people already and caused almost 6 million deaths. This paper aims to develop and design a framework for early diagnosis and fast classification of COVID-19 symptoms using multimodal Deep Learning techniques. METHODS: we collected chest X-ray and cough sample data from open source datasets, Cohen and datasets and local hospitals. The features are extracted from the chest X-ray images are extracted from chest X-ray datasets. We also used cough audio datasets from Coswara project and local hospitals. The publicly available Coughvid DetectNow and Virufy datasets are used to evaluate COVID-19 detection based on speech sounds, respiratory, and cough. The collected audio data comprises slow and fast breathing, shallow and deep coughing, spoken digits, and phonation of sustained vowels. Gender, geographical location, age, preexisting medical conditions, and current health status (COVID-19 and Non-COVID-19) are recorded. RESULTS: The proposed framework uses the selection algorithm of the pre-trained network to determine the best fusion model characterized by the pre-trained chest X-ray and cough models. Third, deep chest X-ray fusion by discriminant correlation analysis is used to fuse discriminatory features from the two models. The proposed framework achieved recognition accuracy, specificity, and sensitivity of 98.91%, 96.25%, and 97.69%, respectively. With the fusion method we obtained 94.99% accuracy. CONCLUSION: This paper examines the effectiveness of well-known ML architectures on a joint collection of chest-X-rays and cough samples for early classification of COVID-19. It shows that existing methods can effectively used for diagnosis and suggesting that the fusion learning paradigm could be a crucial asset in diagnosing future unknown illnesses. The proposed framework supports health informatics basis on early diagnosis, clinical decision support, and accurate prediction.


Subject(s)
COVID-19 , Deep Learning , Humans , COVID-19/diagnostic imaging , X-Rays , SARS-CoV-2 , Speech , Cough/diagnostic imaging , Early Diagnosis
2.
Comput Electr Eng ; 103: 108396, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2041639

ABSTRACT

Over the past few years, the awful COVID-19 pandemic effect has become a lethal sickness. The processing of the gathered samples requires extra time due to the use of medical diagnostic equipment, methodologies, and clinical testing procedures for the early diagnosis of infected individuals. An innovative multimodal paradigm for the early diagnosis and precise categorization of COVID-19 is put up as a solution to this issue. To extract distinguishing features from the prepared chest X-ray picture and cough (audio) database, chest X-ray-based and cough-based model are used here. Other public chest X-ray image datasets, and the Coswara cough (audio) dataset containing 92 COVID-19 positive, and 1079 healthy subjects (people) using the deep Uniform-Net, and Convolutional Neural Network (CNN). The weighted sum-rule fusion method and ensemble deep learning algorithms are utilized to further combine the extracted features. For the early diagnosis of patients, the framework offers an accuracy of 98.67%.

3.
Computers & electrical engineering : an international journal ; 2022.
Article in English | EuropePMC | ID: covidwho-2034105

ABSTRACT

All witnessed the terrible effects of the COVID-19 pandemic on the health and work lives of the population across the world. It is hard to diagnose all infected people in real time since the conventional medical diagnosis of COVID-19 patients takes a couple of days for accurate diagnosis results. In this paper, a novel learning framework is proposed for the early diagnosis of COVID-19 patients using hybrid deep fusion learning models. The proposed framework performs early classification of patients based on collected samples of chest X-ray images and Coswara cough (sound) samples of possibly infected people. The captured cough samples are pre-processed using speech signal processing techniques and Mel frequency cepstral coefficient features are extracted using deep convolutional neural networks. Finally, the proposed system fuses extracted features to provide 98.70% and 82.7% based on Chest-X ray images and cough (audio) samples for early diagnosis using the weighted sum-rule fusion method.

4.
Computers & electrical engineering : an international journal ; 2022.
Article in English | EuropePMC | ID: covidwho-2034104

ABSTRACT

Over the past few years, the awful COVID-19 pandemic effect has become a lethal sickness. The processing of the gathered samples requires extra time due to the use of medical diagnostic equipment, methodologies, and clinical testing procedures for the early diagnosis of infected individuals. An innovative multimodal paradigm for the early diagnosis and precise categorization of COVID-19 is put up as a solution to this issue. To extract distinguishing features from the prepared chest X-ray picture and cough (audio) database, chest X-ray-based and cough-based model are used here. Other public chest X-ray image datasets, and the Coswra cough (audio) dataset containing 92 COVID-19 positive, and 1079 healthy subjects (people) using the deep Uniform-Net, and Convolutional Neural Network (CNN). The weighted sum-rule fusion method and ensemble deep learning algorithms are utilized to further combine the extracted features. For the early diagnosis of patients, the framework offers an accuracy of 98.67 percentage. Graphical

5.
Computer methods and programs in biomedicine ; 2022.
Article in English | EuropePMC | ID: covidwho-2027060

ABSTRACT

Background and objective: COVID-19 outbreak has become one of the most challenging problems for human being. It is a communicable disease caused by a new coronavirus strain, which infected over 375 million people already and caused almost 6 million deaths. This paper aims to develop and design a framework for early diagnosis and fast classification of COVID-19 symptoms using multimodal Deep Learning techniques. Methods: we collected chest X-ray and cough sample data from open source datasets, Cohen and datasets and local hospitals. The features are extracted from the chest X-ray images are extracted from chest X-ray datasets. We also used cough audio datasets from Coswara project and local hospitals. The publicly available Coughvid DetectNow and Virufy datasets are used to evaluate COVID-19 detection based on speech sounds, respiratory, and cough. The collected audio data comprises slow and fast breathing, shallow and deep coughing, spoken digits, and phonation of sustained vowels. Gender, geographical location, age, preexisting medical conditions, and current health status (COVID-19 and Non-COVID-19) are recorded. Results: the proposed framework uses the selection algorithm of the pre-trained network to determine the best fusion model characterized by the pre-trained chest X-ray and cough models. Third, deep chest X-ray fusion by discriminant correlation analysis is used to fuse discriminatory features from the two models. The proposed framework achieved recognition accuracy, specificity, and sensitivity of 98.91%, 96.25%, and 97.69%, respectively. With the fusion method we obtained 94.99% accuracy. Conclusion: this paper examines the effectiveness of well-known ML architectures on a joint collection of chest-X-rays and cough samples for early classification of COVID-19. It shows that existing methods can effectively used for diagnosis and suggesting that the fusion learning paradigm could be a crucial asset in diagnosing future unknown illnesses. The proposed framework supports health informatics basis on early diagnosis, clinical decision support, and accurate prediction.

6.
J Healthc Eng ; 2022: 4096950, 2022.
Article in English | MEDLINE | ID: covidwho-1770031

ABSTRACT

Individuals with pre-existing diabetes seem to be vulnerable to the COVID-19 due to changes in blood sugar levels and diabetes complications. As observed globally, around 20-50% of individuals affected by coronavirus had diabetes. However, there is no recent finding that diabetic patients are more prone to contract COVID-19 than nondiabetic patients. However, a few recent findings have observed that it could be at least twice as likely to die from complications of diabetes. Considering the multifold mortality rate of COVID-19 in diabetic patients, this study proposes a COVID-19 risk prediction model for diabetic patients using a fuzzy inference system and machine learning approaches. This study aimed to estimate the risk level of COVID-19 in diabetic patients without a medical practitioner's advice for timely action and overcoming the multifold mortality rate of COVID-19 in diabetic patients. The proposed model takes eight input parameters, which were found as the most influential symptoms in diabetic patients. With the help of the various state-of-the-art machine learning techniques, fifteen models were built over the rule base. CatBoost classifier gives the best accuracy, recall, precision, F1 score, and kappa score. After hyper-parameter optimization, CatBoost classifier showed 76% accuracy and improvements in the recall, precision, F1 score, and kappa score, followed by logistic regression and XGBoost with 75.1% and 74.7% accuracy. Stratified k-fold cross-validation is used for validation purposes.


Subject(s)
COVID-19 , Diabetes Mellitus , Algorithms , Humans , Logistic Models , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL